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Abstract 
Despite the growing importance of the digital sector, research on economic complexity 

and its implications continues to rely mostly on administrative records—e.g. data on 

exports, patents, and employment—that fail to capture the nuances of the digital 

economy. In this paper we use data on the geography of programming languages used 

in open-source software projects to extend economic complexity ideas to the digital 

economy. We estimate a country’s software economic complexity and show that it 

complements the ability of measures of complexity based on trade, patents, and 

research papers to account for international differences in GDP per capita, income 

inequality, and emissions. We also show that open-source software follows the 

principle of relatedness, meaning that a country’s software entries and exits are 

explained by specialization in related programming languages. We conclude by 

exploring the diversification and development of countries in open-source software in 

the context of large language models (LLMs). Together, these findings help extend 

economic complexity methods and their policy considerations to the digital sector. 

 

Introduction 

The study of economic complexity has predominantly relied on administrative records, such as 

trade data (Hidalgo et al., 2007; Hidalgo and Hausmann, 2009), patent filings (Balland and Rigby, 

2017; Kogler et al., 2013), and employment statistics (Jara-Figueroa et al., 2018; Neffke and 

Henning, 2013), that while valuable, struggle to capture the importance of the digital economy. 

This “blind spot” is important because software capabilities—which are human capital intensive—

represent a potentially more mobile and transmissible source of economic complexity that could 

be key for policy efforts focused on increasing the complexity of economies (Hidalgo, 2023). Yet, 

despite this evident need, we currently lack internationally comparable estimates of economic 
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complexity for the software sector that can help us understand the capabilities implicit in the 

production of software and its dynamics.  

 

Here we use data on the geographic distribution of programming languages used in open-source 

software (OSS) projects hosted on GitHub to generate internationally comparable measures of 

economic complexity and to explore whether software follows the principle of relatedness 

(Hidalgo et al., 2018): the tendency of economies to enter economic activities that are related to 

their pattern of specialization.  

 

But why software?  

 

There are several factors that make the geography of software, and in particular of open-source 

software, a useful complement to our current understanding of economic complexity and 

development.  

 

First, software development and the use of IT technology are key predictors of the productivity 

and innovation capacity of firms (Brynjolfsson and Hitt, 2003, 1998), and hence, of an economy’s 

growth potential (Brynjolfsson and Saunders, 2010). In the case of OSS, firms creating and using 

OSS tend to be more productive (Nagle, 2019, 2018; Rock, 2019), while at the country-level, OSS 

participation predicts entrepreneurship (Wright et al., 2023). This is not constrained only to firms 

on the software sector, since software is a complementary input that has become increasingly 

prevalent across many industries (Rahmati et al., 2021). For instance, 40% of the cost of a new 

automobile is electronics—which rely on software for both their operation and production 

(Charette, 2021).  

 

Second, OSS libraries are a key building block of most software projects (Eghbal, 2020), and thus, 

are supported by strategic investments. In the US alone, annual investment in OSS runs in the tens 

of billions of dollars (Korkmaz et al., 2024), indicating that OSS is not a fringe area of software 

development, but a fundamental building block of the global software ecosystem.  
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Third, the unique geographic aspects of OSS development indicate that the distribution of complex 

capabilities in software may deviate significantly from those in other industries. In particular, as it 

is known for complex and innovative activities  (Audretsch and Feldman, 1996; Balland et al., 

2020), OSS development is quite diffuse across countries but highly concentrated within sub-

national regions (Wachs et al., 2022). Software is also amenable to international collaborations, 

which can occur quite fluidly across distances (Goldbeck, 2023). Together these aspects suggest 

that estimates of economic complexity based on (open-source) software can provide novel and 

complementary insights about the complexity and growth potential of economies. 

 

We validate software complexity by comparing its ability to explain international variations in 

GDP per capita, income inequality, and emissions, with published measures of complexity, finding 

that software complexity robustly explains variance in these outcomes that is unaccounted for by 

these complexity measures (e.g. Hidalgo and Hausmann, 2009; Stojkoski et al., 2016; Stojkoski et 

al., 2023b). From a policy perspective, the accessibility and granularity of open-source software 

data offer a cost-effective means to track and potentially enhance economic complexity, allowing 

policymakers a new route to design interventions focused on fostering digital capabilities and drive 

sustainable economic growth (Stojkoski et al., 2023a). 

 

Economic Complexity and the Digital Economy 

 

Economic complexity involves the use of fine-grained sectoral data to generate indicators of 

economic structure that explain changes in specialization patterns (Guevara et al., 2016; Hausmann 

et al., 2014; Hidalgo, 2021; Hidalgo et al., 2007; Poncet and de Waldemar, 2015) and variation in 

macroeconomic outcomes, such as economic growth (Chávez et al., 2017; Domini, 2022; 

Hausmann et al., 2014; Hidalgo and Hausmann, 2009; Poncet and de Waldemar, 2013; Stojkoski 

et al., 2016; Vallim and Monasterio, 2023; Weber et al., 2021), income inequality (Bandeira 

Morais et al., 2018; Ben Saâd and Assoumou-Ella, 2019; Chu and Hoang, 2020; Hartmann et al., 

2017; Le Caous and Huarng, 2020; Lee and Vu, 2019; Sbardella et al., 2017), and emissions (Can 

and Gozgor, 2017; Doğan et al., 2021; Lapatinas et al., 2019; Mealy and Teytelboym, 2020; Neagu, 

2019; Romero and Gramkow, 2021). In the last fifteen years, these methods grew into popular 

indicators for international and regional development policy (Balland et al., 2022; Hidalgo, 2023, 
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2021). Yet, despite important efforts to expand these methods beyond the confines of trade data 

(Balland and Rigby, 2017; Chávez et al., 2017; Guevara et al., 2016; Stojkoski et al., 2023b), 

economic complexity research still suffers from a “digital blind-spot,” derived from the lack of 

work on datasets that could provide a fine-grained view of the software industry. This blind-spot 

blocks us from understanding how key insights from the economic complexity literature, like the 

principle of relatedness (Hidalgo et al., 2018) or the use of complexity metrics to explain 

macroeconomic outcomes, translate to the digital sector. 

 

Two key ideas in economic complexity are the quantitative formalization of relatedness and 

economic complexity.  

 

Relatedness is the idea that firms benefit from inter-industry spillovers when they are in close 

geographic proximity to firms in a related industry (e.g. industries sharing similar knowledge 

inputs) (Autant-Bernard, 2001; Jaffe, 1986). Recent formalization of relatedness involve the use 

of standard recommender system techniques, in particular collaborative filtering methods (Jannach 

et al., 2010), to estimate the potential of an economy in an activity starting from patterns of co-

agglomeration (Ellison et al., 2010; Hidalgo et al., 2018, 2007; Neffke et al., 2011).  

 

Economic complexity metrics involve the use of dimensionality reduction techniques (e.g. spectral 

methods such as eigendecomposition) on specialization matrices to produce estimates of the 

complexity of an economy. These estimates have been repeatedly shown to explain international 

variations in economic growth (Chávez et al., 2017; Domini, 2022; Hausmann et al., 2014; Hidalgo 

and Hausmann, 2009; Poncet and de Waldemar, 2013; Stojkoski et al., 2016; Vallim and 

Monasterio, 2023; Weber et al., 2021), income inequality (Bandeira Morais et al., 2018; Ben Saâd 

and Assoumou-Ella, 2019; Chu and Hoang, 2020; Hartmann et al., 2017; Le Caous and Huarng, 

2020; Lee and Vu, 2019; Sbardella et al., 2017), and emissions (Can and Gozgor, 2017; Doğan et 

al., 2021; Lapatinas et al., 2019; Mealy and Teytelboym, 2020; Neagu, 2019; Romero and 

Gramkow, 2021), among other outcomes (Barza et al., 2024; Nguyen, 2022; Vu, 2020). This has 

motivated the use of the Economic Complexity Index (ECI) as an official policy target or 

instrument. For instance, Malaysia’s New Industrial Master Plan 2030 by the Ministry of 

Investment, Trade, and Industry, defines the advancement of economic complexity as its first 
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mission (Ministry of Investment Trade and Industry, 2023). Armenia’s 2021-2026 government 

plan includes a “support toolkit for investment programmes involving economic complexity” 

(Republic of Armenia, 2021), and Saudi Arabia’s vision 2030 declares a commitment to “diversify 

the capabilities of our economy” as a vital step towards their economic sustainability.  

 

Yet, while economic complexity methods enjoy significant adoption in both academic and policy 

circles, their application is still limited by the availability of fine-grained data. The efforts have 

thus focused on international trade statistics (Hidalgo et al., 2007; Hidalgo and Hausmann, 2009), 

manufacturing, payroll, firm registry, and employment data for industries (Chávez et al., 2017; 

Fritz and Manduca, 2021; Hidalgo, 2021; Jara-Figueroa et al., 2018; Neffke et al., 2011; Neffke 

and Henning, 2013), as well as data on occupations (Alabdulkareem et al., 2018; Jara-Figueroa et 

al., 2018; Muneepeerakul et al., 2013), patents (Balland and Rigby, 2017; Kogler et al., 2015, 

2013), and research papers (Chinazzi et al., 2019; Guevara et al., 2016; Stojkoski et al., 2023b). 

This expansion recently led to the introduction of multidimensional economic complexity 

(Stojkoski et al., 2023b), the notion that metrics of complexity derived from multiple datasets 

complement each other to explain macroeconomic outcomes (e.g. trade and patent complexity 

estimates explain economic growth better together than alone). But with the exception of some 

recent work on digital trade (Stojkoski et al., 2023a) and digital infrastructure (Liang and Tan, 

2024), the multidimensional expansion of economic complexity is yet to reach the digital sector, 

despite a growing number of works highlighting the importance of the software industry (Shapiro 

and Varian, 1999, Chattergoon and Kerr, 2022). For instance (Aum and Shin, 2024) emphasize 

the critical role of software in modern economies, highlighting that software and labor are 

substitutes with a high elasticity of substitution. 

 

In this paper, we address economic complexity’s digital gap by using data on the geographic 

distribution of programming languages used in OSS projects to develop estimates of economic 

complexity for the software sector and to explore the principle of relatedness in the context of 

OSS. In the next section we present the data and methods used to calculate these indicators and 

then explore their ability to explain international variance in GDP per capita, income inequality, 

and emissions that is unaccounted for by measures of complexity based on trade, patents, and 

research papers. We then construct a network of related open-source languages to explore the 
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principle of relatedness in the context of software. The last section concludes and discusses open-

source software in the context of large language models. 

 

Data and methods 
 

We use data on the geography of open-source software provided by the GitHub Innovation Graph 

(GHIG).1 GitHub is the leading platform for OSS development, with over 100 million users 

worldwide. The dataset presents the number of GitHub users pushing code by country and 

programming language on a quarterly basis starting from Q1 2020 and continuing until Q4 2023. 

To estimate the location of developers, we leverage the fact that the GHIG data assigns software 

contributions to countries based on the IP address of the developer. This data provides a more 

accurate measure of a location’s software activity than sources relying on self-reported locations, 

which are known to suffer from bias (Hecht et al. 2011). After completing the basic data cleaning 

procedures explained in Section 1 of the Supplementary information, we are left with a sample of 

163 countries and 150 programming languages for the period of 2020-2023. 

 

We estimate the Economic Complexity Index (ECI) using the standard technique introduced by 

(Hidalgo and Hausmann, 2009).  

 

Let Xcl be a matrix counting the number of developers with an IP in country c pushing code to 

GitHub in programming language l. We use Xcl to derive the matrix of specialization or revealed 

comparative advantage Rcl as:  

!!" =
#!"#
#!#"

, 

 

where omitted indexes have been added over (e.g. #! = ∑ #!"" ). We then binarize the matrix !!" 
to generate the matrix &!" = 1 if !!" ≥ 1	or 0 otherwise. Finally, we let the economic complexity 

index of a country c (ECIc) and the language complexity index of an activity l (PCIl) be defined as 

the stead state of the map: 

 
1GitHub Innovation Graph https://github.com/github/innovationgraph 
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As it is customary, we normalize ECI and PCI values by subtracting their respective mean and 

dividing them by their standard deviation.  

 

Technically, ECI is a spectral-clustering method that assigns one number to each country, and one 

number to each product, that minimizes the distance between the number assigned to each country 

and the numbers assigned to its products (Bottai et al., 2024; Mealy et al., 2019; Servedio et al., 

2024). That is, it provides an optimal one-factor split of the specialization matrix. 

 

We compare ECI indicators derived from open-source software (ECIsoftware) with the 

multidimensional economic complexity data compiled by (Stojkoski et al., 2023b), which uses 

trade data from the Observatory of Economic Complexity (oec.world), patent data from the World 

Intellectual Property Organization’s International Patent System, and research publication data 

from SCImago Journal & Country Rank portal. These datasets are described in detail in Section 2 

of the Supplementary information. 

 

Software and economic complexity 

 

We begin our analysis by comparing our estimate of economic complexity based on the geography 

of programming languages (ECIsoftware) with published estimates of economic complexity based 

on physical product exports (ECItrade), patents (ECItech), and research publications (ECIresearch) 

(Stojkoski et al., 2023b).  

 

Figure 1A compares four specialization matrices (M) where countries are sorted by diversity 

(number of products, programming languages they specialize in, etc.) and columns are sorted by 

ubiquity (number of countries specialized in each language, product, etc.). Much like the 

specialization matrices for trade, patents, and research papers, the country-programming language 
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matrix exhibits a nested structure (Bustos et al., 2012; Mariani et al., 2019), meaning that low 

diversity economies tend to specialize in a subset of ubiquitous activities found in more diverse 

economies.  

 

Figure 1B shows a map of ECIsoftware based ranking of countries constructed from the country-

programming language matrix and Figure 1C compares ECIsoftware with the three other ECI 

measures, showing that the geography of software complexity is different from that expressed in 

data on products, patents, and research publications. For instance, Russia (RUS), a well-known 

natural resource exporters with a low ECItrade score (0.119 on a normalized [-1,1] scale), scores 

much higher in ECIsoftware (0.884 on a normalized [-1,1] scale). Similarly, India (IND) scores much 

higher in ECIsoftware  (0.585) than in ECIresearch (-0.257). Section 3 of the Supplementary information 

presents a table comparing the values of ECIsoftware, ECItrade, ECItech, and ECIresearch for all countries 

in our sample. 
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Figure 1 A Specialization matrices for countries and programming-languages, products, patents, and research papers. 
B Geographic distribution of software economic complexity. C Comparison between ECIsoftware and ECItrade, ECItech, 
and ECIresearch respectively (R2=0.597, p-value <0.001, R2=0.606, p-value <0.001 and R2=0.523, p-value <0.001). For 
visualization purposes, ECI values are normalized to a scale of [-1, 1]. All ECI measures presented above are 
calculated using 2020 data only. 
 

Next, we explore the ability of ECIsoftware to complement the ability of other measures of economic 

complexity to explain international variations in GDP per capita, income inequality, and emissions. 

We focus on GDP per capita instead of economic growth because the time series for ECIsoftware  is 

short (less than four years), limiting our model to a single panel cross-section with about 90 

observations. Tables 2 to 4 explore how these measures of economic complexity explain cross-

sectional differences in GDP per capita, income inequality, and emission intensities (emissions per 

unit of CO2).  
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Table 1 ECIsoftware and GPD per capita (2020) in a multidimensional setting. Robust standard errors in parentheses. 
Significance codes: *p<0.1, **p<0.05, ***p<0.01 
 

 GDP per capita (log) 

 (1) (2) (3) (4) (5) (6) (7) (8) 

ECIsoftware 0.299***    0.212*** 0.261*** 0.244*** 0.138*** 

 (0.042)    (0.048) (0.041) (0.047) (0.048) 

ECItrade  0.278***   0.129***   0.145*** 

  (0.038)   (0.032)   (0.041) 

ECItechnology   0.228***   0.063  -0.003 

   (0.042)   (0.038)  (0.041) 

ECIresearch    0.200***   0.075** 0.089** 

    (0.034)   (0.034) (0.035) 

Population (log) -0.159*** -0.003 -0.068 -0.007 -0.135** -0.176*** -0.154** -0.125* 

 (0.062) (0.052) (0.073) (0.065) (0.061) (0.066) (0.059) (0.065) 

Natural resources (log) 2.586*** 2.876*** 2.858*** 3.397*** 2.378*** 2.363*** 2.520*** 2.286*** 

 (0.818) (0.871) (0.959) (0.841) (0.820) (0.869) (0.805) (0.863) 

Observations 92 92 92 92 92 92 92 92 

R2 0.831 0.801 0.751 0.769 0.848 0.836 0.841 0.861 

Adjusted R2 0.825 0.794 0.742 0.761 0.841 0.828 0.834 0.852 

 

 

Table 1 shows that the correlation between ECIsoftware and GDP per capita remains strong after 

controlling for other estimates of economic complexity. In fact, ECIsoftware works out to be as good 

as ECItrade at explaining international variations in GDP per capita in the complete model (column 

8). This validates ECIsoftware as a complementary indicator by showing that there is information 

about international variations in GDP per capita contained in ECIsoftware that is not redundant with 

the information captured by the other ECIs. Moreover, the robustness of results across different 

model specifications suggests ECIsoftware is a reliable and consistent predictor. 

 

Next, we look at the ability of ECIsoftware to explain international variations in income inequality 

(Table 2). Here our data is even more limited, involving only 82 countries. Still, we find ECIsoftware 

is the only estimate of complexity that remains strong, negative, and significant across all 

specifications.  
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Table 2 ECIsoftware and income inequality in a multidimensional setting. ECI estimates are based on 2020 data, while 
the dependent variable is the average Gini coefficient between 2010 and 2020. Robust standard errors in parentheses. 
Significance codes: *p<0.1, **p<0.05, ***p<0.01 
 

 Gini coefficient 

 (1) (2) (3) (4) (5) (6) (7) (8) 

ECIsoftware -0.729**    -0.672** -0.767** -0.801*** -0.834*** 

 (0.283)    (0.269) (0.295) (0.221) (0.226) 

ECItrade  -0.329*   -0.129   0.017 

  (0.196)   (0.176)   (0.184) 

ECItechnology   -0.065   0.108  0.073 

   (0.225)   (0.222)  (0.201) 

ECIresearch    0.591***   0.639*** 0.639*** 

    (0.196)   (0.184) (0.197) 

GPD per capita (log) 1.421* 1.540 0.957 1.263 1.638* 1.324 1.885** 1.793* 

 (0.831) (0.959) (0.831) (0.787) (0.933) (0.846) (0.839) (0.907) 

GPD per capita (log)2 -0.507 -0.888** -0.806** -1.395*** -0.564** -0.484 -1.118*** -1.096*** 

 (0.320) (0.352) (0.329) (0.394) (0.331) (0.316) (0.371) (0.361) 

Population (log) 0.924*** 0.490** 0.460** 0.196 0.911*** 0.885*** 0.731*** 0.706*** 

 (0.274) (0.190) (0.207) (0.167) (0.274) (0.271) (0.218) (0.220) 

Natural resources (log) 1.634 1.169 1.530 0.775 1.548 1.314 1.065 0.862 

 (2.159) (2.288) (1.957) (1.915) (2.284) (2.139) (2.126) (2.202) 

Observations 82 82 82 82 82 82 82 82 

R2 0.288 0.224 0.198 0.312 0.292 0.291 0.421 0.423 

Adjusted R2 0.241 0.173 0.146 0.267 0.235 0.234 0.375 0.360 

 

Finally, we look at the intensity of greenhouse gas emissions (emissions per unit of GDP per 

capita). This is a particularly interesting outcome for ECIsoftware because compared to the physical 

economy, software and information technologies are expected to be a less carbon-intensive way 

to generate GDP (Ciuriak and Ptashkina, 2020; Haberl et al., 2020; Hubacek et al., 2021; Romero 

and Gramkow, 2021; Stojkoski et al., 2023a; Wang and Zhang, 2021; Wiedenhofer et al., 2020).  
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Table 3 ECIsoftware and greenhouse gas emission intensity (2020) in a multidimensional setting. Robust standard errors 
in parentheses. Significance codes: *p<0.1, **p<0.05, ***p<0.01 
 

 Emissions per GDP 

 (1) (2) (3) (4) (5) (6) (7) (8) 

ECIsoftware -0.487**    -0.392** -0.393** -0.450*** -0.295 

 (0.144)    (0.168) (0.154) (0.158) (0.185) 

ECItrade  -0.367**   -0.214   -0.182 

  (0.162)   (0.190)   (0.203) 

ECItechnology   -0.333**   -0.203  -0.133 

   (0.158)   (0.165)  (0.178) 

ECIresearch    -0.188   -0.072 -0.098 

    (0.124)   (0.129) (0.128) 

GPD per capita (log) -1.193*** -1.466*** -1.617*** -1.714*** -1.029** -1.105*** -1.137** -0.920** 

 (0.411) (0.369) (0.350) (0.437) (0.393) (0.388) (0.435) (0.416) 

Population (log) 0.619*** 0.360** 0.490** 0.347** 0.605*** 0.687*** 0.623*** 0.657*** 

 (0.170) (0.158) (0.189) (0.151) (0.173) (0.181) (0.168) (0.185) 

Natural resources (log) 6.692*** 6.948*** 7.905*** 6.952*** 6.612*** 7.184*** 6.609*** 6.835*** 

 (1.888) (1.846) (2.191) (2.237) (1.706) (1.999) (1.915) (1.929) 

Observations 92 92 92 92 92 92 92 92 

R2 0.491 0.469 0.470 0.447 0.503 0.504 0.494 0.513 

Adjusted R2 0.468 0.445 0.445 0.422 0.474 0.475 0.464 0.472 

 

 

Table 3 shows that software is the only complexity measure that remains significant across most 

specifications, supporting the notion that software complexity contributes to the creation of low 

carbon intensity forms of value added (GDP). To address potential endogeneity issues and 

illustrate the robustness of our results, we provide instrumental variable regressions for all three 

settings above, following the identification strategy of (Stojkoski et al., 2023b). Detailed 

explanation and all the related regression results can be found in Section 4 of the Supplementary 

information. 

 

Related diversification in Open-Source Software 

 
Having validated ECIsoftware as a complementary measure of economic complexity, we now explore 

whether changes in the software specialization of countries is subject to the principle of 

relatedness: the notion that economies are more likely to enter—and less likely to exit—related 

activities (Autant-Bernard, 2001; Guevara et al., 2016; Hidalgo et al., 2018, 2007; Jaffe, 1986; 

Neffke et al., 2011; Neffke and Henning, 2013). We test the principle of relatedness following the 
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approach introduced in the product space (Hidalgo et al., 2007), which starts from the same 

specialization matrix (M) we used to derive measures of economic complexity. Formally, we 

define the proximity between two languages l and l’ as the minimum of the conditional probability 

that two countries are specialized in the same programming languages: 

 

/""! =
∑ &!"! &!"#
max	(&" , &"#)

 

 

And define the relatedness between a county c and a programming language l as: 

 

5!" =
∑ &!"#/""!"#

/"
 

 

Where again, missing indices have been added over (e.g.  /" = ∑ /""!"# ). 

 

To test whether countries are more likely to enter programming languages that are related to their 

existing portfolio of open-source software specializations, we run linear probability models (Table 

4) predicting entry events as a function of relatedness and the ubiquity of a language. We also 

include country and language fixed effects. We estimate relatedness using 2020 data and say that 

a country enters a language if they were not specialized in that language (RCA < 1) in 2020 and 

2021 and then gained comparative advantage (RCA>=1) in 2022 and 2023 (e.g. Mcl={0,0,1,1} for 

the years 2020 to 2023). We employ clustered standard errors by country to account for within-

country correlations over time, ensuring robust and reliable standard errors in our regression 

models. Estimations based on logit models can be found in the Supplementary information. 
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Table 4 Entry models on countries gaining revealed comparative advantage (RCA >= 1) in programming languages 
(2020-2023). Standard errors are clustered at the country level. Significance codes: *p<0.1, **p<0.05, ***p<0.01 
 

 Entry 

 (1) (2) (3) (4) (5) (6) (7) 

Relatedness density 0.207*** 0.262* 0.384*** 0.321**  0.241*** 0.218* 

 (0.064) (0.144) (0.081) (0.136)  (0.069) (0.113) 

Ubiquity     -0.026*** -0.034*** -0.049*** 

     (0.009) (0.009) (0.008) 

Country FE No Yes No Yes No No Yes 

Language FE No No Yes Yes No No No 

Observations 1584 1584 1584 1584 1584 1584 1584 

R2 0.021 0.095 0.188 0.277 0.011 0.038 0.121 

 

Table 4 shows that open-source software specialization follows the principle of relatedness, with 

countries being more likely to specialize in programming languages that are related to those they 

are currently specialized in. The negative and significant effect of language ubiquity indicates that 

countries are less likely to enter common languages, which is reasonable since many countries 

already have comparative advantage in them. We note, however, that the explanatory power of the 

principle of relatedness in the case of OSS is rather mild, with a baseline R2 of about 2%. 

Nevertheless, this effect is robust to country and programming language fixed effects.  

 

Figure 2 shows the network of related programming languages following the visualization 

approach of (Hidalgo et al., 2007). Figure 2A highlights the position of specific languages and a 

fully labeled example is included in the Supplementary information. We then focus on the entrance 

and exit patterns of three countries on Figure 2B. In each case, most entries occur into languages 

adjacent to already existing specializations, while exits tend to occur out of more weakly connected 

languages. Canada, for instance, gained revealed comparative advantage in CUDA, a 

programming language created by Nvidia for parallel computing on graphics processers, a 

technique widely used in modern AI systems. This reflects a broader trend in the country's 

technological leadership in machine learning (Klinger et al., 2018). China gained comparative 

advantage in various programming languages, including for example Erlang. Erlang is a functional 

programming language designed by Ericsson and often used in the telecommunications sector. 

China exited PureBasic, a language related to BASIC which was otherwise disconnected from 

China’s other previous specializations. Finally, Romania entered Perl, Rust, and SCSS, all well-
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connected to previous specializations, and exited Objective-C, a disconnected previous 

specialization. 

 

 

Figure 2 A Network representation of language relatedness. (B) Changes in revealed comparative advantage (RCA) 
in programming languages (2020-2023) in Canada, China, and Romania. Dark blue nodes indicate specialization in 
2020-2021 (RCA >=1), while yellow nodes indicate subsequent (2022-2023) specialization in languages, and red 
nodes indicate exits. Countries are more likely to specialize in new languages adjacent to their previous specializations. 
 

We then explore the principle of relatedness in the context of exits (Table 5). We consider as exits 

countries that were specialized in a programming language (RCA >= 1) in 2020 and 2021 and later 

lost their comparative advantage (RCA < 1) in 2022 and 2023 (e.g. Mcl={1,1,0,0} for the years 

going from 2020 to 2023). The negative and significant effect of relatedness indicates that 

countries are less likely to lose their advantage in programming languages that are related to those 

they currently specialize in. Again, the effects of relatedness are overall mild (R2<1% on the 

baseline model) but are robust to the inclusion of country and language fixed-effects, showing that 

they go beyond what we can explained based on the statistic characteristics of a country or a 

language. 
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Table 5 Exit models on countries losing revealed comparative advantage (RCA < 1) in programming languages (2020-
2023). Standard errors are clustered at the country level. Significance codes: *p<0.1, **p<0.05, ***p<0.01 
 

 Exit 

 (1) (2) (3) (4) (5) (6) (7) 

Relatedness density -0.089*** -0.257*** -0.072*** -0.308***  -0.112*** -0.270*** 

 (0.021) (0.062) (0.026) (0.115)  (0.025) (0.073) 

Ubiquity     -0.002 -0.012** 0.003 

     (0.006) (0.006) (0.010) 

Country FE No Yes No Yes No No Yes 

Language FE No No Yes Yes No No No 

Observations 2978 2978 2978 2978 2978 2978 2978 

R2 0.009 0.101 0.097 0.181 0.000 0.011 0.101 

 

 

Discussion 
 

Here we expanded the study of economic complexity to include the software sector by leveraging 

recently published data on the geography of open-source software (OSS). By relying on the IP 

addresses of the developers contributing to OSS projects, instead of on self-reported locations 

(which can suffer from reporting bias (Hecht et al., 2011)), we were are able to construct estimates 

of the geographic distribution of open-source software language knowledge for 100+ 

programming languages and use them to create internationally comparable economic complexity 

estimate for the software sector and study OSS in the context of the principle of relatedness. 

 

When we explored the ability of ECIsoftware to explain variance in income, inequality, and 

emissions, we found that the correlation between ECIsoftware and each of these macroeconomic 

outcomes remain strong even after taking all three other measures of complexity into 

consideration. When we explored OSS entries and exits, we found that both behave as we would 

expect based on the principle of relatedness, albeit with a rather small size effect. 

 

But what can we make of these findings? 

 

The literature on economic development is rife with work advising economies to diversify towards 

more complex economic activities (Balland et al., 2018; Foray et al., 2009; Hausmann et al., 2014; 
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Hidalgo, 2023). High economic complexity activities are associated with better wages and may 

face less competition in international markets than the production of more ubiquitous commodities. 

But does this advice translate to software?  

 

Unlike physical products, software relies less on immobile factors, such as large manufacturing or 

processing plants and natural resources. At the same time, software outputs are highly tradable 

(OECD, 2023; Stojkoski et al., 2024) and digital products are known to be—on average—of 

relatively high complexity compared to physical products (Stojkoski et al., 2024). This means that 

software provides new opportunities for structural upgrading that are less reliant on physical 

factors of production and more reliant on efforts to attract human capital.  

 

Software-based economic complexity is also an interesting to track over time because it is uniquely 

exposed to a fast-changing and high growth sector. For instance, it is likely sensitive to recent 

changes in technology, such as the introduction of Large Language Models (LLMs). LLMs like 

ChatGPT, Mistral, or Perplexity, are reshaping the world of software development (Peng, 

Kalliamvakou, et al., 2023; Ozkaya 2023). Though it is unclear how AI will affect the software 

industry(Quispe and Grijalba, 2024), we can already observe that LLMs are better at providing 

programming advice in languages for which they have more training data (del Rio-Chanona et al. 

2023), which are likely to be ubiquitous languages. 

 

We can connect this idea with economic complexity by looking at the geographic distribution of 

the programming languages that are more likely to be impacted by LLMs. For this, we can use an 

estimate of the impact of ChatGPT on specific programming languages constructed by del Rio-

Chanona et al. (2023) and compare that estimate with the ubiquity of each programming language 

(a measure of the number of countries specialized in a language (Figure 3)). This reveals a strong 

and significant correlation between the geographic ubiquity of a language and the expected impact 

of LLMs, meaning that LLMs are more likely to disrupt high ubiquity languages which are the 

ones used primarily by economies with low levels of software economic complexity.  
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Figure 3 The relationship between software language ubiquity and the estimated impact of the release of ChatGPT 
on that language, taken from (del Rio-Chanona et al., 2023). 
 

But while our study sheds light on how to estimate, validate, and use measures of economic 

complexity based on software, it is also subject to important limitations. Open-source software 

data does not capture information about all of the software capabilities of an economy. In fact, 

many important companies in the digital sector, such as Apple, have key closed source software 

solutions (e.g. iOS). Our analysis is blind to the geography of these capabilities. At the same time, 

since open-source software is a fundamental building block of the digital economy (Eghbal, 2020), 

its production and use should be correlated with digital innovation and productivity in firms and 

regions (Lerner and Tirole, 2005; Nagle, 2019, 2018; Wachs et al., 2022; Wright et al., 2023), 

including the development of proprietary software solutions. Another important limitation is that 

not all open-source software is on GitHub. While GitHub is the dominant host of OSS projects by 

volume, there are still other players in this space (e.g. SourceForge, GitLab) that are missing from 

our analysis. OSS projects hosted outside of GitHub are also different on average, for example 

they are more likely to be academic (Trujillo et al., 2022). 

 

Also, our study has limitations that come from the combination of economic complexity methods 

with OSS data. For instance, the interpretation of a product complexity measure applied to 

programming languages is not straightforward, since programming languages are related by 

relationships of complementary (e.g. html and css) instead of shared common inputs (as in the case 
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of industries and products). This results in estimates of complexity that are more easily 

interpretable for the geographies (countries in our case) than the activities (programming 

languages). The use of programming languages is also not an ideal proxy for capturing software 

capabilities, or to study relatedness, since software capabilities could be better reflected in areas 

of application than the languages themselves. For instance, python is a programming language that 

can be used for tasks as simple as parsing a data file to the creation of advanced machine learning 

models. Going forward, well categorized data on software projects may provide an avenue towards 

better measures of software complexity and relatedness.  

 

Nevertheless, despite these limitations, our work represents a valuable step towards extending 

economic complexity analysis to the digital realm, offering insights into the geographic 

distribution of software capabilities and their potential impact on macroeconomic outcomes. As 

the digital economy continues to evolve, further research integrating diverse data sources and 

accounting for emerging technologies like large language models will be crucial to refine our 

understanding of software economic complexity and its policy implications. 
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Supplementary Information 
 
S1 GitHub data preparation 
 
We leverage the open access datasets by GitHub’s Innovation Graph (GHIH). Software economic 

complexity is calculated from the languages.csv table that presents the number of GitHub users 

pushing code by country and programming language on a quarterly basis. The country of users is 

estimated using the IP address of each contributor. While not perfect, IP geolocation is a 

considerably more reliable indicator of the geography of software production than self-reported 

location, which can contain fictional information (e.g. Narnia, Hogwarts, etc.). The raw data 

captures the activity of tens of millions of developers from 164 countries in 379 languages between 

2020 January and 2023 December on a quarterly basis (with regular updates). As an initial data 

cleaning, we excluded data formats and markup languages such as yaml, json, text, svg, Markdown 

and xml following (del Rio-Chanona et al., 2023). To focus on the most relevant language, we 

limit our exercise to the top 150 languages with the most contributors on average across the 2020-

2023 period. We aggregate the quarterly data to yearly observations by considering the average 

number of developers in each country, language combination. 

 
S2 Data preparation to compare economic complexity measures 
We compare the economic complexity of open-source software production (ECIsoftware) with three 

other metrics of economic complexity constructed by (Stojkoski et al., 2023b): (1) trade 

complexity (ECItrade) based on product export data from the Observatory of Economic 

Complexity2, (2) technology complexity (ECItech) based on patent applications data from World 

Intellectual Property Organization’s International Patent System, and (3) research complexity 

(ECIresearch) based on published research documents data from SCImago Journal & Country Tank 

portal3. The alternative ECI indicators are constructed in the similar fashion as ECIsoftware and are 

available for cross validation4.  

 

 
2 Observatory of Economic Complexity (OEC) https://oec.world 
3 SCImago Journal & Country Rank (SJR) https://www.scimagojr.com/aboutus.php  
4 https://doi.org/10.7910/DVN/K4MEFW 
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This means that, following Stojkoski et al. (2023b), we restrict the analysis to countries with a 

population of more than 1 million, total exports of more than 1 billion USD, and at least 4 patents.  

In order to refine the data on research publications, we focus on countries with at least 100 

publications per year in research areas where at least 30 articles are published per year. Values for 

country, research area combinations where fewer than 3 articles were published per year were 

replaced by 0 to reduce noise. Where a country, research area combination did not receive 100 

citations on average in the 2017-2020 period, the value was replaced with 0. 

 

We connect the different versions of ECI to socio-economic indicators of countries. The economic 

performance of countries is measured through GDP per capita (2020) from the CEPII Gravity 

database (Conte et al., n.d.). The income inequality and emission indicators are taken from the 

online data repository of the World Bank5. Due to the uneven data coverage, we use the average 

Gini coefficient of countries for the period 2010-2023. The emission intensity indicators are from 

2019. 

 
  

 
5 World Bank https://data.worldbank.org/indicator/ 
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S3 Comparison of different economic complexity values 
 
Table S1A ECI values for all countries (2020) in our sample 

Ranking Country ECI software ECI trade ECI technology ECI research Ranking Country ECI software ECI trade ECI technology ECI research 

1 DEU 2.059 1.885 1.514 1.848 51 PER -0.011 -0.686 0.416 0.224 
2 GBR 2.031 1.423 1.107 2.390 52 TUN -0.015 0.098 -1.039 -0.479 
3 USA 2.028 1.546 0.705 2.538 53 ISL -0.015    
4 FRA 2.002 1.353 1.079 1.752 54 CHL -0.024 -0.222 1.062 1.189 
5 CAN 1.954 0.907 1.015 2.315 55 PHL -0.061 0.565 -0.091 -0.174 
6 CHE 1.905 2.003 1.336 1.913 56 VNM -0.099 -0.031 0.161 -0.545 
7 NLD 1.903 1.113 0.993 2.152 57 ZAF -0.101 0.072 0.966 1.281 
8 AUS 1.889 -0.320 1.146 2.241 58 PAK -0.103 -0.678 -1.000 -0.360 
9 SWE 1.887 1.597 1.551 1.882 59 LUX -0.113    
10 ITA 1.881 1.307 1.354 1.680 60 CYP -0.113    
11 RUS 1.873 0.491 1.180 0.220 61 MYS -0.117 1.033 0.688 -0.287 
12 JPN 1.854 2.191 0.883 0.618 62 CRI -0.132 0.187 -0.706 -0.093 
13 POL 1.833 1.041 1.084 0.524 63 SRB -0.134 0.679 -0.160 -0.098 
14 ESP 1.825 0.763 1.206 1.764 64 LVA -0.145    
15 CHN 1.796 0.974 0.719 -0.519 65 KAZ -0.193 -0.245 0.001 -0.834 
16 HKG 1.776 1.103 0.634 0.995 66 IRN -0.198 -0.114 0.292 0.295 
17 CZE 1.656 1.583 1.105 0.411 67 SAU -0.210 0.878 0.909 -0.142 
18 AUT 1.560 1.540 1.494 1.608 68 KEN -0.238 -0.489 -1.125 0.467 
19 NOR 1.550 0.706 1.354 1.707 69 GTM -0.257 -0.384 -1.276 -0.851 
20 FIN 1.547 1.484 1.349 1.515 70 ARE -0.294 0.153 0.101 0.087 
21 DNK 1.524 0.976 1.058 1.697 71 BGD -0.295 -1.140 -1.438 -0.238 
22 BEL 1.475 1.342 1.023 1.815 72 NGA -0.300 -1.667 -1.621 0.054 
23 SGP 1.463 1.824 0.648 0.368 73 URY -0.355 -0.004 -0.176 0.158 
24 TWN 1.434 1.980 0.601 0.046 74 NPL -0.358    
25 IRL 1.430 1.309 0.791 1.678 75 ETH -0.373 -0.867  0.341 
26 IND 1.409 0.561 1.004 -0.453 76 SEN -0.399 -0.697 -1.063 -0.374 
27 ISR 1.354 1.154 0.752 1.796 77 IRQ -0.414 -0.671  -1.085 
28 ROU 1.241 1.029 0.517 -0.157 78 MLT -0.430    
29 PRT 1.239 0.467 0.890 1.051 79 ECU -0.450 -0.982 -1.022 -0.51 
30 GRC 1.183 0.256 -1.022 0.934 80 LBN -0.467 0.270 -0.772 0.314 
31 KOR 1.127 1.873 0.653 0.277 81 SLV -0.474 -0.149  -1.377 
32 HUN 1.109 1.413 0.946 0.852 82 DOM -0.499 -0.146 -1.012 -1.377 
33 IDN 1.103 -0.074 -0.293 -0.008 83 GHA -0.516 -1.292 -2.019 0.313 
34 NZL 1.071 0.446 0.941 1.731 84 HND -0.517 -0.599  -0.851 
35 ARG 0.653 0.068 0.183 0.912 85 MDA -0.528 -0.142 -0.265 -1.054 
36 BLR 0.642 0.780 -0.323 -0.866 86 PRI -0.529    
37 SVK 0.612 1.332 0.635 -0.383 87 UGA -0.530 -0.989 -1.251 0.451 
38 BRA 0.606 0.439 1.181 1.281 88 BOL -0.542 -0.981  -0.493 
39 UKR 0.582 0.515 0.710 -0.985 89 CMR -0.576 -1.234  -0.347 
40 SVN 0.531 1.458 0.939 0.119 90 RWA -0.578    
41 MEX 0.452 1.152 0.025 0.665 91 JOR -0.586 -0.079 -0.976 -0.187 
42 LKA 0.451 -0.488 -0.536 -0.684 92 DZA -0.587 -1.206 -0.467 -0.976 
43 COL 0.404 0.148 0.673 0.494 93 AZE -0.590 -0.537 -0.760 -1.517 
44 BGR 0.387 0.525 0.573 -0.509 94 MKD -0.603 0.020 -0.995 -0.496 
45 HRV 0.376 0.743 0.341 0.276 95 KHM -0.606 -0.959 -2.651 -0.124 
46 LTU 0.271 0.906 -0.212 -0.432 96 ARM -0.608 -0.339 -0.657 -0.817 
47 EST 0.245    97 MMR -0.619 -1.140  -0.476 
48 TUR 0.174 0.597 1.147 0.810 98 GEO -0.629 -0.053 -0.716 0.769 
49 EGY 0.140 -0.159 -0.291 0.172 99 PSE -0.636    
50 THA 0.005 0.906 0.698 -0.017 100 SYR -0.648   -2.007 
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Table S1B ECI values for all countries (2020) in our sample  

 
Ranking Country ECI software ECI trade ECI technology ECI research 

101 MAR -0.652 -0.486 -0.018 -0.821 

102 ALB -0.660 -0.337 -1.022 -0.315 

103 VEN -0.663 -1.097 -1.435 -0.432 

104 BIH -0.666 0.514 -0.301 -1.275 

105 CUB -0.667  -2.182 -1.030 

106 UZB -0.671 -0.553 -1.240 0.109 

107 KGZ -0.678 -0.212  -0.342 

108 PAN -0.679 0.229 0.407 0.291 

109 PRY -0.679 -0.422  -1.152 

110 KWT -0.712 0.037 -1.042 -0.795 

111 NIC -0.723 -1.072  -0.927 

112 TZA -0.744 -0.639  0.380 

113 MUS -0.748    

114 ZWE -0.751 -0.894 -0.624 0.051 

115 JAM -0.751 -0.373  0.626 

116 SDN -0.758 -1.311 -1.279 -1.338 

117 MAC -0.768    

118 TTO -0.768    

119 BHR -0.768    

120 OMN -0.768 -0.205 -1.095 -0.898 

121 QAT -0.774 -0.047 -0.883 -0.008 

122 CIV -0.825 -1.046  -0.616 

123 MDG -0.85 -1.222  -0.418 

124 MNG -0.873 -1.207 -2.040 0.140 

125 REU -0.900    

126 AGO -0.900 -1.424   

127 BEN -0.900   -0.397 

128 COD -0.900 -1.475  -0.975 

129 MNE -0.947    

130 ZMB -0.947 -0.717  0.127 

131 YEM -0.947 -1.207  -1.455 

132 MOZ -1.053 -1.249  -0.330 

133 LBY -1.177 -1.41 -0.920 -2.221 

134 HTI -1.186    

135 TGO -1.186 -0.882  -1.377 

136 AFG -1.186 -1.186  -1.152 

137 LAO -1.186 -0.973  -0.694 

138 TJK -1.186    

139 MWI -1.245   0.515 

140 SOM -1.245    

141 BRB -1.286    

142 BRN -1.286    

143 MDV -1.286    

144 BLZ -1.286    

145 BFA -1.286 -1.679  -0.517 

146 BWA -1.286 -0.574  -0.429 

147 LBR -1.286    
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S4 Instrumental variables approach for assessing the impact of software on GDP, inequality 
and emissions 
 

To address potential endogeneity issues and to further validate our results, we take an instrumental 

variables approach proposed by Stojkoski et al. (2023b) in which we instrument the ECIsoftware 

values of a country with the average ECIsoftware values of the three most similar non-neighboring 

countries (countries with similar specialization patterns but no common land or maritime borders). 

The idea is that there might be factors that are either local (e.g., culture, geography) or relevant 

only to certain dependent variables (e.g., country-specific social policies to mitigate inequalities) 

that could drive both complexity and other macroeconomic outcomes. 

 

To decouple local factors and conditions from our complexity estimates, we identify the three non-

neighboring countries with the most similar specialization pattern (using minimum conditional 

probability) and take the average of their ECIsoftware values. Table S2, Table S3 and Table S4 

present the same regression settings as in the main text, but using instrumental variable estimation 

in all possible cases. Our results remain unchanged. 

 

Two diagnostic tests were performed to assess the strength of the instrumental variables. The Weak 

Instruments Test (Kleibergen and Paap, 2006) assesses whether the instruments are sufficiently 

correlated with the endogenous regressors to provide reliable estimates, and the Durbin-Wu-

Hausman test (Hausman, 1978; Wu, 1974) examines whether the endogenous variables in the 

model are indeed exogenous or correlated with the error terms, suggesting potential endogeneity. 

Both tests confirmed the strength of our instrument and indicate no significant endogeneity 

problems for all models, with the Kleibergen-Paap rk Wald F statistics well above the critical value 

and Durbin-Wu-Hausman p-values consistently above 0.1. 
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Table S2 ECIsoftware and GPD per capita (2020) in a multidimensional setting using instrumental variables. Robust 
standard errors in parentheses. Significance codes: *p<0.1, **p<0.05, ***p<0.01 
 

 GPD per capita (log) 

 (1) (2) (3) (4) (5) (6) (7) (8) 

ECIsoftware 0.308***    0.235*** 0.278*** 0.251*** 0.157*** 

 (0.043)    (0.050) (0.044) (0.048) (0.050) 

ECItrade  0.278***   0.114***   0.137*** 

  (0.038)   (0.033)   (0.041) 

ECItechnology   0.228***   0.053  -0.006 

   (0.042)   (0.040)  (0.046) 

ECIresearch    0.200***   0.071** 0.082** 

    (0.034)   (0.034) (0.035) 

Population (log) -0.168*** -0.003 -0.068 -0.007 -0.149** -0.182*** -0.158*** -0.133*** 

 (0.063) (0.052) (0.073) (0.065) (0.062) (0.066) (0.059) (0.065) 

Natural resources (log) 2.528*** 2.876*** 2.858*** 3.397*** 2.326*** 2.334*** 2.495*** 2.271*** 

 (0.814) (0.871) (0.959) (0.841) (0.810) (0.864) (0.803) (0.859) 

Instrument Yes No No No Yes Yes Yes Yes 

Observations 92 92 92 92 92 92 92 92 

R2 0.830 0.801 0.751 0.769 0.847 0.835 0.841 0.861 

Adjusted R2 0.824 0.794 0.742 0.761 0.840 0.828 0.834 0.851 
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Table S3 ECIsoftware and income inequality in a multidimensional setting using instrumental variables. ECI estimates 
are based on 2020 data, while the dependent variable is the average Gini coefficient between 2010 and 2020. Robust 
standard errors in parentheses. Significance codes: *p<0.1, **p<0.05, ***p<0.01 
 

 Gini coefficient 

 (1) (2) (3) (4) (5) (6) (7) (8) 

ECIsoftware -0.698**    -0.646** -0.731** -0.850*** -0.889*** 

 (0.286)    (0.282) (0.298) (0.232) (0.244) 

ECItrade  -0.329*   -0.137   0.031 

  (0.196)   (0.1820   (0.188) 

ECItechnology   -0.065   0.100  0.078 

   (0.225)   (0.223)  (0.201) 

ECIresearch    0.591***   0.642*** 0.644*** 

    (0.196)   (0.184) (0.198) 

GPD per capita (log) 1.398* 1.540 0.957 1.263 1.624* 1.307 1.923** 1.801* 

 (0.839) (0.959) (0.831) (0.787) (0.935) (0.852) (0.846) (0.906) 

GPD per capita (log)2 -0.520 -0.888** -0.806** -1.395*** -0.576* -0.500 -1.101*** -1.075*** 

 (0.314) (0.352) (0.329) (0.394) (0.326) (0.310) (0.370) (0.359) 

Population (log) 0.902*** 0.490** 0.460** 0.196 0.895*** 0.865*** 0.764*** 0.736*** 

 (0.281) (0.190) (0.207) (0.167) (0.284) (0.275) (0.222) (0.223) 

Natural resources (log) 1.621 1.169 1.530 0.775 1.533 1.324 1.083 0.870 

 (2.152) (2.288) (1.957) (1.915) (2.288) (2.124) (2.147) (2.205) 

Instrument Yes No No No Yes Yes Yes Yes 

Observations 82 82 82 82 82 82 82 82 

R2 0.288 0.224 0.198 0.312 0.292 0.291 0.421 0.422 

Adjusted R2 0.241 0.173 0.146 0.267 0.235 0.234 0.374 0.359 
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Table S4 ECIsoftware and greenhouse gas emission intensity (2020) in a multidimensional setting using instrumental 
variables. Robust standard errors in parentheses. Significance codes: *p<0.1, **p<0.05, ***p<0.01 
 

 Emissions per GPD 

 (1) (2) (3) (4) (5) (6) (7) (8) 

ECIsoftware -0.419***    -0.329* -0.324* -0.358** -0.202 

 (0.159)    (0.177) (0.169) (0.172) (0.193) 

ECItrade  -0.367**   -0.238   -0.212 

  (0.162)   (0.189)   (0.198) 

ECItechnology   -0.333**   -0.226  -0.145 

   (0.158)   (0.166)  (0.178) 

ECIresearch    -0.188   -0.096 -0.121 

    (0.124)   (0.130) (0.129) 

GPD per capita (log) -1.310*** -1.466*** -1.617*** -1.714*** -1.099*** -1.195*** -1.255*** -0.979** 

 (0.441) (0.369) (0.350) (0.437) (0.410) (0.414) (0.459) (0.429) 

Population (log) 0.570*** 0.360** 0.490** 0.347** 0.566*** 0.652*** 0.567*** 0.615*** 

 (0.169) (0.158) (0.189) (0.151) (0.171) (0.181) (0.165) (0.185) 

Natural resources (log) 6.774*** 6.948*** 7.905*** 6.952*** 6.665*** 7.310*** 6.679*** 6.903*** 

 (1.964) (1.846) (2.191) (2.237) (1.743) (2.073 (1.988) (1.962) 

Instrument Yes No No No Yes Yes Yes Yes 

Observations 92 92 92 92 92 92 92 92 

R2 0.490 0.469 0.470 0.447 0.502 0.503 0.492 0.511 

Adjusted R2 0.467 0.445 0.445 0.422 0.473 0.474 0.462 0.470 
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S5 Alternative entry and exit regression specifications 
Table S5 Logit regressions on countries gaining revealed comparative advantage (RCA >= 1) in programming 
languages (2020-2023). Standard errors are clustered at the country level. Significance codes: *p<0.1, **p<0.05, 
***p<0.01 
 

 Entry 

 (1) (2) (3) (4) (5) (6) (7) 

Relatedness density 2.891*** 3.430** 5.073*** 1.333  2.826*** 2.307* 

 (0.778) (1.612) (0.983) (3.514)  (0.699) (1.373) 

Ubiquity     -0.570*** -0.574*** -0.963*** 

     (0.213) (0.173) (0.200) 

Country FE No Yes No Yes No No Yes 

Language FE No No Yes Yes No No No 

Observations 1584 1043 982 612 1584 1584 1043 

Pseudo R2 0.038 0.083 0.203 0.362 0.026 0.068 0.144 

BIC 778 1030 908 1050 788 762 994 

 

Table S6 Logit regressions on countries losing revealed comparative advantage (RCA < 1) in programming languages 
(2020-2023). Standard errors are clustered at the country level. Significance codes: *p<0.1, **p<0.05, ***p<0.01 
 

 Exit 

 (1) (2) (3) (4) (5) (6) (7) 

Relatedness density -2.165*** -4.493*** -1.911*** -6.921***  -2.546*** -4.862*** 

 (0.675) (1.089) (0.658) (2.149)  (0.632) (1.305) 

Ubiquity     -0.046 -0.260* 0.093 

     (0.132) (0.144) (0.234) 

Country FE No Yes No Yes No No Yes 

Language FE No No Yes Yes No No No 

Observations 2978 2160 1903 1281 2978 2978 2160 

Pseudo R2 0.024 0.153 0.112 0.258 0.000 0.030 0.154 

BIC 1089 1385 1357 1584 1115 1090 1392 
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S6 Language space with all labels included 
 

 


